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Abstract

We give more details here on the other Burniat surfaces, Beauville surfaces and
the Keum–Naie surface with K2 = 4, including constructions of exceptional collections
and answers to Alexeev’s question about effective semigroups, giving links to computer
code where appropriate.

Section 1 deals with Burniat surfaces. Section 2 is on Beauville surfaces and the final
section is on the Keum–Naie surface.

1 Burniat surfaces

1.1 Primary Burniat surfaces with K2 = 6

Exceptional collections on primary Burniat surfaces with K2 = 6 were first constructed
and studied in [2] (see also [1]). We apply our own methods here, to give new examples of
exceptional collections and to put exceptional collections on the other families of Burniat
surfaces into context.

We briefly explain the Burniat line configuration, see [4] for details. Take the three
coordinate points P1, P2, P3 in P2, and label the edges A0 = P1P2, B0 = P2P3, C0 = P3P1.
Then let A1, A2 (respectively Bi, Ci) be two general lines passing through P1 (resp. P2,
P3). This gives nine lines in total, four passing through each Pi. Blow up the three points
Pi to obtain a del Pezzo surface Y of degree 6. The strict transforms of these nine lines
(for which we use the same labels) together with the three exceptional curves Ei, are called
the Burniat line configuration.
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Figure 1: The Primary Burniat configuration with K2 = 6 fig!primary-Burniat-6

The Burniat surface X is a (Z/2)2-cover of Y branched in the Burniat line configuration,
and X is a surface of general type with pg = 0, K2 = 6 and Tors(X) = (Z/2)6. The
maximal abelian cover A of X is a (Z/2)8-cover of Y .

The Burniat configuration has four free parameters, and primary Burniat surfaces form
a 4-dimensional irreducible connected component of the moduli space of sufaces of general
type (see [37]). In particular, h1(TX) = 4 and h2(TX) = 6.

In Section 1.5, we show that the primary Burniat surfaces satisfy assumptions (A),
exhibiting a basis for PicX/TorsX in terms of reduced pullbacks of irreducible branch
divisors. The appendix also lists coordinates for the reduced pullback of each irreducible
component of the branch divisor according to Definition 3.4.

We consider the following exceptional collection on Y

Λ: 0, e1, e2, e3, e0, 2e0, (1) eqn!primary-Burniat-num-excl

and use assumption (A) to produce a numerical exceptional collection (Li) on X. The
computer lists acyclic sets A(L−1i ) and A(L−1j ⊗ Li), and a systematic search through
these enumerates all exceptional collections of numerical type (1).

Theorem 1.1 There are 81332 exceptional collections L0 = OX , L1(τ1), . . . , L5(τ5) on X6

of numerical type (1). We give a sample of two below.

τ1 τ2 τ3 τ4 τ5

1 [1, 0, 1, 0, 0, 0] [0, 0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1] [0, 0, 0, 0, 0, 1] [1, 1, 1, 1, 0, 1]

2 [1, 0, 1, 0, 0, 0] [0, 0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1] [1, 1, 1, 1, 0, 0] [1, 1, 1, 1, 0, 1]

Table 1: Exceptional collections on the primary Burniat surface tab!primary-Burniat

Remark 1.1 The precise number of exceptional collections is not important, especially
since we have not even taken into account the action of the Weyl group. The basic ob-
servation is that there is an abundance of exceptional collections of line bundles on the
primary Burniat surface, from which we may choose those with the best properties.
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There are 16 exceptional collections on X of numerical type Λ which have no Ext1-
groups, and the two sample exceptional collections are taken from these 16. In all 16 cases,
the Ext-groups for the anticanonically extended sequence (12) have the same dimensions,
displayed in Table 2.

0 1 2 3 4 5

0 1 q2 q2 q2 q2 6q2

1 1 0 0 2q2 5q2 5q2

2 1 0 2q2 5q2 5q2 6q2

3 1 2q2 5q2 5q2 6q2 6q2

4 1 3q2 3q2 4q2 4q2 4q2

5 1 0 q2 q2 q2 3q2

Table 2: Ext-table of an exceptional collection on the primary Burniat surface tab!ext-Burniat6

This is the best possible situation, because the product m2 of any two elements of
degree 2 must be identically zero for degree reasons, and all higher products mn are also
zero. Moreover the quasiheight of E is 4. To summarise, we have:

Proposition 1.1 Let E be any one of the 16 exceptional collections on the primary Burniat
surface for which there are no Ext1-groups. Then the A∞-algebra H∗E is formal, and the
product of any two elements of positive degree vanishes. The Hochschild cohomology of
each of the corresponding quasi-phantom categories A is

HH0(A) = C, HH1(A) = 0, HH2(A) = C4, HH3(A) ⊃ C6.

1.2 Secondary Burniat surfaces with K2 = 5

The secondary Burniat surfaces arise when the branch configuration has one or two triple
points. We first impose a single triple point P4 on the three branch lines A1, B1, and
C2 (see Figure 2). The (Z/2)2-cover would then have a 1

4(1, 1) singularity over P4, so we
blow up at P4, to obtain a del Pezzo surface Y of degree 5. The induced nonsingular
(Z/2)2-cover X of Y is called a secondary Burniat surface with K2 = 5. Since the cover
is unramified over P4, the torsion group of X is only (Z/2)5 as opposed to (Z/2)6 for the
primary Burniat surface.

The configuration in Figure 2 has three free parameters, and secondary Burniat surfaces
with K2 = 5 form a 3-dimensional irreducible connected component of the moduli space
of surfaces of general type (see [5]), so h1(TX) = h2(TX) = 3.

In Appendix 1.6, we give a basis for PicX/TorsX and coordinates for PicX. In
particular, X satisfies assumptions (A). We consider the following exceptional collection of
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Figure 2: The Secondary Burniat configuration with K2 = 5 fig!secondary-Burniat-5

line bundles on Y
Λ: 0, e1, e2, e3, e4, e0, 2e0.

As usual, we get a numerical exceptional collection (Li) on X, and we enumerate all
exceptional collections on X5 corresponding to our chosen numerical exceptional collection.

Theorem 1.2 There are 2597 exceptional collections on X5 corresponding to L0, . . . , L6.
We give a sample

L0, L1[0, 0, 1, 1, 1], L2[0, 1, 0, 0, 1], L3[1, 1, 1, 0, 1], L4[0, 1, 1, 0, 0],

L5[0, 1, 1, 0, 1], L6[1, 0, 0, 1, 1],

whose Ext-table is found in Table 3.

The sample exceptional collection was chosen because it is the only one of numerical
type Λ for which the four line bundles E1, . . . , E4 corresponding to the (−1)-curves on
Y are mutually orthogonal. There are many other exceptional collections of numerical
type Λ with very few non-zero Ext1-groups, but unlike X6, we do not find any exceptional
collections that have no non-zero Ext1-groups.

Nevertheless, from the table we see that there is no nontrivial composition of two
elements of degree 1 in H∗B. Moreover, the elements of degree 1 do not compose with any
element below the zigzag.

Proposition 1.2 The A∞-algebra of the displayed exceptional collection on the secondary
Burniat surface with K2 = 5 is formal, and the product of any two elements of nonzero
degree is zero. Moreover, the corresponding quasi-phantom category has Hochschild coho-
mology

HH0(A) = C, HH1(A) = 0, HH2(A) = C3, HH3(A) ⊃ C3.

1.3 Secondary Burniat surfaces with K2 = 4

We start by describing the secondary Burniat line configurations. Take three coordinate
points P1, P2, P3 in P2, and label the edges A0 = P1P2, B0 = P2P3, C0 = P3P1. Then let
A1, A2 (respectively Bi, Ci) be two lines passing through P1 (resp. P2, P3). If these six
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0 1 2 3 4 5 6

0 1 q + 2q2 q + 2q2 q + 2q2 q2 3q2 6q2

1 1 0 0 0 2q2 5q2 4q2

2 1 0 0 2q2 5q2 4q2 5q2

3 1 0 2q2 5q2 4q2 5q2 5q2

4 1 2q2 5q2 4q2 5q2 5q2 5q2

5 1 3q2 q + 3q2 3q2 3q2 3q2 3q2

6 1 q q + q2 q + q2 q + q2 0 2q2

Table 3: Ext-table of an exceptional collection on the secondary Burniat surface with
K2 = 5 tab!ext-Burniat5

lines are chosen to be general, then we have the Burniat line configuration. This gives nine
lines in total, four passing through each Pi.

The secondary Burniat line configurations arise when the above line configuration is
allowed to have one or two triple points. We consider the case of two triple points, which we
denote P4 and P5. There are two possibilities, leading to two different secondary Burniat
surfaces with K2

X = 4 (see Figure 3). If P4 and P5 do not lie on the same branch line, then
the blow up Y of P2 at P1, . . . , P5 is a del Pezzo surface of degree 4, and the (Z/2)2-cover is
called non-nodal. If P4 and P5 do lie on a single branch line (in Fig. 3, this line is A1), then
Y is a weak del Pezzo surface, and the (Z/2)2-cover is called nodal because the canonical
model of X has a 1

2(1, 1) singularity. In both cases, the second triple point causes the
torsion group of X to drop to (Z/2)4.
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Figure 3: The secondary Burniat configurations with K2 = 4 (nodal configuration is on
the right) fig!secondary-Burniat-4

Both configurations in Figure 3 have two free parameters, so that we obtain two 2-
dimensional families of secondary Burniat surfaces with K2 = 4. We recall some facts from
[5] and [6]. The non-nodal case again forms an irreducible connected component of the
moduli space, with h1(TX) = 2 and h2(TX) = 0. The nodal case is more interesting: the 2-
dimensional family is a proper subset of a 3-dimensional irreducible connected component
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of the moduli space. In fact, h1(TXn) = 3 and h2(TXn) = 1, and there is a 3-dimensional
family of extended Burniat surfaces (see [5]), each of which is a (Z/2)2-cover of a general-
isation of the nodal Burniat configuration. We do not directly consider extended Burniat
surfaces in this article.

The data listed in Appendix 1.7 shows that both X4 and Xn
4 satisfy assumption (A).

Choosing the numerical exceptional collection

Λ: 0, e1, e2, e3, e4, e5, e0, 2e0,

we enumerate all exceptional collections on Xn
4 corresponding to Λ.

Theorem 1.3 There are 13 exceptional collections on Xn
4 of numerical type Λ. Here is a

sample exceptional collection

L0, L1[1, 0, 1, 0], L2[0, 1, 0, 1], L3[0, 0, 1, 1], L4[0, 1, 1, 0],

L5, L6[0, 1, 0, 1], L7[1, 0, 1, 1], (2) eqn!secondary-Burniat-4-nodal

whose Ext-table is found in Table 4.

0 1 2 3 4 5 6 7

0 1 q2 q2 q2 q2 q2 3q2 6q2

1 1 q + q2 0 q + q2 q + q2 2q2 5q2 3q2

2 1 0 0 0 2q2 5q2 3q2 4q2

3 1 0 q + q2 2q2 5q2 3q2 4q2 4q2

4 1 0 2q2 5q2 3q2 4q2 4q2 4q2

5 1 2q2 5q2 3q2 4q2 4q2 4q2 4q2

6 1 3q2 q + 2q2 2q2 2q2 2q2 2q2 2q2

7 1 2q q q q q 2q + q2 q2

Table 4: Ext-table of an exceptional collection on the nodal Burniat surface with K2 = 4 tab!ext-Burniat4-nodal

The non-nodal surface X4 has six exceptional collections of numerical type Λ, but it is
difficult to find one for which the A∞-algebra is obviously formal, because there are too
many nonzero Ext1-groups. We use the Weyl group action on the del Pezzo surface Y to
obtain the following numerical exceptional collection

Λ′ : 0, e4, e2, e5, e1, e3, e0, 2e0.

This is just a permutation of the order in which we blow up the points in P2 to construct
Y .
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Theorem 1.4 There are 40 exceptional collections on X4 of numerical type Λ′, and we
exhibit one with the minimum number of Ext1-groups

L0, L1[0, 0, 0, 1], L2[0, 1, 1, 0], L3[1, 0, 1, 0], L4[0, 1, 0, 1],

L5[1, 0, 0, 0], L6[1, 1, 1, 1], L7[1, 1, 1, 0]. (3) eqn!secondary-Burniat-4

The Ext-table of (3) is displayed in Table 5.

0 1 2 3 4 5 6 7

0 1 q2 q2 q2 q2 q2 3q2 6q2

1 1 0 q + q2 0 q + q2 2q2 5q2 3q2

2 1 q + q2 q + q2 q + q2 2q2 5q2 3q2 4q2

3 1 0 0 2q2 5q2 3q2 4q2 4q2

4 1 0 2q2 5q2 3q2 4q2 4q2 4q2

5 1 2q2 5q2 3q2 4q2 4q2 4q2 4q2

6 1 3q2 q2 2q2 2q2 2q2 2q2 2q2

7 1 2q q q q q q q2

Table 5: Ext-table of an exceptional collection on the non-nodal Burniat surface with
K2 = 4 tab!ext-Burniat4

We see that both the non-nodal and nodal secondary Burniat surfaces with K2 = 4
have quite a few nonzero Ext1-groups, since we do not have as much freedom to search
for “good” exceptional collections. Nevertheless, a careful examination of the tables shows
that no two elements of degree 1 are composable. Thus in both cases, the A∞-algebra is
formal, and the height is 4.

We summarise our results on Burniat surfaces with K2 = 6, 5, 4.

Theorem 1.5 Every primary or secondary Burniat surface has at least one exceptional
collection of maximal length whose A∞-algebra is formal. Moreover, the product of any two
elements of positive degree vanishes, and the height is 4. Thus the Hochschild cohomology
of each corresponding quasiphantom category is

HH0(A) = H0(OX), HH1(A) = 0, HH2(A) = H1(TX), HH3(A) ⊃ H2(TX).

1.4 Tertiary Burniat surface with K2 = 3

Imposing a third triple point on the branch configuration (see Fig. 4) gives a tertiary
Burniat surface X3 with K2

X = 3. The weak del Pezzo surface Y has three (−2)-curves,
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Figure 4: The tertiary Burniat configuration with K2 = 3 fig!tertiary-Burniat-3

A1, B1 and C1, and the canonical model of X3 is a (Z/2)2-cover of a 3-nodal cubic. The
torsion group of X3 is (Z/2)3.

Here the moduli space gets quite involved, and we follow the description of [6]. The
tertiary Burniat surfaces form a 1-dimensional irreducible family, inside a 4-dimensional
irreducible component of the moduli space. The extended tertiary Burniat surfaces form
an open subset of this irreducible component, and the remainder consists of (Z/2)2-covers
of certain singular cubic surfaces. Our main point of interest is that h1(TX) = 4, and
h2(TX) = 0.

In Appendix 1.8, we show that X satisfies assumption (A). We use the computer to
enumerate all exceptional collections on X of numerical type

Λ: 0, e1, e2, e3, e4, e5, e6, e0, 2e0.

Lemma 1.1 There are no exceptional collections of line bundles of numerical type Λ on
the tertiary Burniat surface. �

Remark 1.2 Our systematic search does yield exceptional collections E′ of length seven
with numerical type 0, e1, . . . , e6, but in each case, there are no line bundles corresponding
to e0 or 2e0 which extend E′. We have also checked part of the orbit of Λ under the action
of the Weyl group of Y , and although we find some exceptional collections on X3 of length
eight, we do not find any of length nine.

1.4.1 The E6-symmetry

In order to find an exceptional collection of line bundles on X3, we choose a different
numerical exceptional collection Λ1, using the E6-symmetry of PicY and the Borel–de
Siebenthal procedure. As an example, we consider the sublattice 3A2 inside the extended
Dynkin diagram Ẽ6, which corresponds to a singular del Pezzo surface Y ′ with 3× 1

3(1, 2)

singularities. The minimal resolution Ỹ is a toric surface with a cycle of nine rational
curves with self-intersections

−(−2)− (−1)− (−2)− (−2)− (−1)− (−2)− (−2)− (−1)− (−2)−

To construct Ỹ , choose points P1, P2, P3 in general position in P2. Blow up each Pi
once, and blow up the infinitely near points Q1, Q2, Q3, where Qi is supported at Pi with

8



tangent direction PiPi+1. Alternatively, Ỹ is the minimal resolution of the quotient of P2

by the Z/3-action 1
3(0, 1, 2), which has three fixed points. We fix a geometric marking on

Ỹ so that the strict transform of the exceptional curve over Pi has class ei− e3+i in Pic Ỹ ,
and the exceptional curve over Qi has class e3+i. Then the cycle of curves described above
have numerical classes

e1 − e4, e4, e0 − e1 − e2 − e4, e2 − e5, e5, e0 − e2 − e3 − e5, e3 − e6, e6, e0 − e1 − e3 − e6

Taking cumulative sums of these classes gives a numerical exceptional collection Λ1 on any
del Pezzo surface of degree three:

Λ1 : 0, e1 − e4, e1, e0 − e2 − e4, e0 − e4 − e5, e0 − e4,
2e0 − e2 − e3 − e4 − e5, 2e0 − e2 − e4 − e5 − e6, 2e0 − e2 − e4 − e5. (4) eqn!Lambda1

We again search for exceptional collections of type Λ1 on X, and again we do not find any.
Fortunately, this time we do find exceptional collections on X using the Weyl group action
on Y .

Theorem 1.6 There are exceptional collections on X3 corresponding to certain numerical
exceptional collections in the Weyl group orbit of Λ1. For example, let Λ′1 be the numerical
exceptional collection obtained from Λ1 by swapping e1 and e2. Then

L0, L1[0, 0, 1], L2[0, 1, 1], L3[1, 0, 0], L4[0, 1, 1], L5[0, 0, 1],

L6[1, 1, 0], L7[0, 0, 0], L8[0, 1, 0] (5) eqn!tertiary-Burniat-3

is an exceptional collection on X3 of numerical type Λ′1, whose Ext-table is found in Table
6.

Remark 1.3 We have not studied the whole orbit of numerical exceptional collections,
because the Weyl group is quite large, but we can give an overview based on probabilistic
methods. It seems that approximately two thirds of the orbit of Λ1 do not give any
exceptional collections on X, and the remaining numerical types typically correspond to
anywhere between one and 21 exceptional collections on X. We see that exceptional
collections are much more scarce on X3 than for the other Burniat surfaces.

1.4.2 The A∞-algebra

The exceptional collection (5) was chosen to have the fewest nonzero Ext1-groups, but
there are six of them. Of these, there are no three above the zigzag that may be composed
with one another under m3. Thus m3 is identically zero on H∗B for degree reasons, and
the A∞-algebra of E is formal. There is a single possible product of two elements of degree
1, coming from the chain E1 → E4 → E7. It is not clear whether this product is zero.

9



0 1 2 3 4 5 6 7 8

0 1 0 q2 q2 q2 2q2 2q2 2q2 3q2

1 1 q2 q2 q + 2q2 2q2 2q2 2q2 3q2 3q2

2 1 0 0 q2 q + 2q2 q2 2q2 2q2 2q2

3 1 0 q2 q2 q2 2q2 2q2 2q2 3q2

4 1 q2 q2 q + 2q2 2q2 2q2 2q2 3q2 3q2

5 1 0 0 q2 q + 2q2 q2 2q2 2q2 2q2

6 1 0 q2 q2 q2 2q2 2q2 2q2 3q2

7 1 q2 q2 q + 2q2 2q2 2q2 2q2 3q2 3q2

8 1 0 0 q2 q + 2q2 q2 2q2 2q2 2q2

Table 6: Ext-table of an exceptional collection on the tertiary Burniat surface with K2 = 3 tab!ext-Burniat3

To compute the Hochschild cohomology, we first consider the pseudoheight of E. Ex-
amining the table, we see that the pseudoheight is 3, because

e(E1, E4) + e(E4, E7) + e(E7, E1 ⊗ ω−1X ) + 2− 2 = 3.

In fact, this cycle of line bundles is the only one contributing 3 to the pseudoheight. In
other words, the first page of the spectral sequence converging to NHH•(E, X) has a single
term of total degree 3:

Ext1(E1, E4)⊗ Ext1(E4, E7)⊗ Ext3(E7, S
−1(E1)) ⊂ E1

−2,5.

The differential d1 on the first page maps this term to the direct sum of the following three
spaces

Ext2(E1, E7)⊗ Ext3(E7, S
−1(E1))

Ext1(E1, E4)⊗ Ext4(E4, S
−1(E1))

Ext1(E4, E7)⊗ Ext4(E7, S
−1(E4))

in E1
−1,5.

If we can show that any of the maps are nonzero, then it follows that E2
−2,5 = 0 and

thus h(E) = 4. We do not currently know of a practical method for computing nontrivial
products in H∗B, but the following rough idea should work.

Observe that Extk(Ei, Ej) = Hk(E−1i ⊗ Ej). We write Lij = E−1i ⊗ Ej , and so we are

actually checking injectivity of the cup product H1(L14) ⊗ H1(L47)
∪X−−→ H2(L17). It is
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difficult to compute ∪X explicitly on X, so we pushforward each Lij to Y , and compare
with the cup product ∪Y on Y . We have

H1(ϕ∗L14)⊗H1(ϕ∗L47)
∪Y−−→ H2(ϕ∗L14 ⊗ ϕ∗L47)

µ−→ H2(ϕ∗L17), (6) eqn!cupY

where µ is induced by the natural map ϕ∗L14 ⊗ ϕ∗L47 → ϕ∗(L14 ⊗ L47). By comparing
the definition of ∪Y using Čech complexes with that of ∪X , we see that the composite map
displayed in (6) is equal to ∪X .

It remains to compute the cup product on Y , which can be done by chasing exact
sequences, and to check that µ is injective. We hope to finish this in the near future.

1.5 Data for Primary Burniat surface
app!primary-Burniat

The maps determining the covers A→ X → Y are Φ: H1(Y −∆,Z)→ G and Ψ: H1(Y −
∆,Z)→ G⊕ T . We tabulate them below.

Γ A0 A1 A2 B0 B1 B2 C0 C1 C2

Φ(Γ) g1 g1 g1 g2 g2 g2 g1 + g2 g1 + g2 g1 + g2

Ψ(Γ)− Φ(Γ) 0 g3 g4 0 g5 g6 g7 g8
∑8

i=3 gi

The images of the exceptional curves are obtained in the usual way from equation (1) of
Sec. 2,

Φ(E1) = g2, Φ(E2) = g1 + g2, Φ(E3) = g1, etc.

The following reduced pullbacks are a basis for PicX/TorsX,

e0 = C0 + E1 + E3, e1 = E1, e2 = E2, e3 = E3.

According to these generators, the coordinates on PicX are

Multidegree Torsion

OX(A0) 1 −1 −1 0 [1, 1, 0, 0, 0, 1]

OX(A1) 1 −1 0 0 [1, 0, 0, 0, 1, 0]

OX(A2) 1 −1 0 0 [0, 1, 0, 0, 1, 0]

OX(B0) 1 0 −1 −1 [0, 0, 1, 1, 0, 1]

OX(B1) 1 0 −1 0 [0, 0, 1, 0, 1, 0]

OX(B2) 1 0 −1 0 [0, 0, 0, 1, 1, 0]

OX(C0) 1 −1 0 −1 0

OX(C1) 1 0 0 −1 [0, 0, 0, 0, 1, 1]

OX(C2) 1 0 0 −1 [0, 0, 0, 0, 1, 0]

and OX(KX) = OX(3,−1,−1,−1)[0, 0, 0, 0, 0, 1] by equation (8).
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1.6 Data for Secondary Burniat surface with K2 = 5
app!secondary-Burniat-5

The map Φ: H1(P2 −∆,Z)→ (Z/2)2 is the same as for the primary Burniat surface, but
the triple point at P4 changes Ψ. Indeed, we have Ψ5(A1 +B1 + C2) = 0, which kills one
factor of the torsion group. Thus the maximal abelian cover ψ5 : A→ Y is determined by

Γ A0 A1 A2 B0 B1 B2 C0 C1 C2

Ψ5(Γ)− Φ(Γ) 0 g3 g4 0 g5 g6 g7 g4 + g6 + g7 g3 + g5

and the torsion group is generated by g∗3, . . . , g
∗
7.

The following reduced pullbacks are a basis for the free part of PicX

e0 = C0 + E1 + E3, e1 = E1, e2 = E2, e3 = E3, e4 = C0 − C2 + E1,

with intersection form diag(1,−1,−1,−1,−1). Note that E4 is not a branch divisor, which
explains the funny choice for e4.

The coordinates of PicX according to this basis are:

Multidegree Torsion

OX(A0) 1 −1 −1 0 0 [1, 1, 0, 0, 0]

OX(A1) 1 −1 0 0 −1 [1, 0, 0, 0, 0]

OX(A2) 1 −1 0 0 0 [0, 1, 0, 0, 1]

OX(B0) 1 0 −1 −1 0 [0, 0, 1, 1, 0]

OX(B1) 1 0 −1 0 −1 [0, 0, 1, 0, 0]

OX(B2) 1 0 −1 0 0 [0, 0, 0, 1, 1]

OX(C0) 1 −1 0 −1 0 0

OX(C1) 1 0 0 −1 0 [0, 0, 0, 0, 1]

OX(C2) 1 0 0 −1 −1 0

Thus OX(KX) = OX(3,−1,−1,−1,−1)[0, 0, 0, 0, 1].

1.7 Data for Secondary Burniat surfaces with K2 = 4
app!secondary-Burniat-4

1.8 Data for Tertiary Burniat surfaces with K2 = 3
app!tertiary-Burniat-3

The maps determining the covers A → X → Y are Φ: H1(Y − ∆,Z) → (Z/2)2 and
Ψ: H1(Y −∆,Z)→ (Z/2)5. We tabulate them below.

Γ A0 A1 A2 B0 B1 B2 C0 C1 C2

Φ(Γ) g1 g1 g1 g2 g2 g2 g1 + g2 g1 + g2 g1 + g2

Ψ(Γ)− Φ(Γ) 0 g3 g4 0 g5 g3 + g4 + g5 g3 + g4 g4 + g5 g3 + g5

12



The images of the exceptional curves are obtained in the usual way from equation (1) of
Sec. 2.

The following reduced pullbacks form a basis of the free part of Pic(X3):

e0 = C0 + E1 + E3, e1 = E1, e2 = E2, e3 = E3,

e4 = C0 − C2 + E1, e5 = B0 −B2 + E3, e6 = A0 −A2 + E2.

We note that ϕ∗(Ei) = 2ei for i = 4, 5, 6. The coordinates for the reduced pullback of each
irreducible component of the branch divisor are

Multidegree Torsion

OX(A0) 1 −1 −1 0 0 0 0 [1, 1, 0]

OX(A1) 1 −1 0 0 −1 −1 0 [1, 0, 1]

OX(A2) 1 −1 0 0 0 0 −1 [1, 1, 0]

OX(B0) 1 0 −1 −1 0 0 0 [0, 0, 1]

OX(B1) 1 0 −1 0 −1 0 −1 [1, 0, 1]

OX(B2) 1 0 −1 0 0 −1 0 [0, 0, 1]

OX(C0) 1 −1 0 −1 0 0 0 0

OX(C1) 1 0 0 −1 0 −1 −1 [1, 0, 1]

OX(C2) 1 0 0 −1 −1 0 0 0

Thus OX(KX) = OX(3,−1,−1,−1,−1,−1,−1)[1, 0, 1] by equation (8).

13



1.9 The Nef cone of Burniat 3

On the del Pezzo surface fi = e0 − ei, h0 = e0, 2e0 −
∑
ei + ej + ek for (j, k) =

(5, 6), (4, 6), (4, 5), (3, 4), (2, 5), (1, 6) Write these in terms of ∆ A0 +C2, C0 +B2, B0 +A2,
A2 +B2, A2 + C2, B2 + C2

These are all the Cremona hyperplanes except for the three effective −2-curves. 2e0 −∑
i∈S ei for S = (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 4), (1, 3, 5), (1, 3, 6), (1, 4, 6), (1, 5, 6), (2, 3, 4), (2, 3, 5), (2, 3, 6),

(2, 4, 5), (2, 5, 6), (3, 4, 5), (3, 4, 6), (4, 5, 6) In terms of fi etc
2h0 − E1 − E2 − E3 = f1 +B0 = f2 + C0 = f3 +A0,
f4 +A0, f4 + C0 = f1 + C2, f4 +B0 = f2 + C2, f4 +B2, f4 +A2,
f5 +A0 = f1 +B2, f5 + C0, B0 + f5, f5 +A2,C2 + f5,
f6 +A0, f6 + C0, B0 + f6, f6 +B2, C2 + f6,
h′ = 2h0 − E4 − E5 − E6 (not written in terms of fibr.)
K = (3− 1− 1− 1− 1− 1− 1)
These are ones that can not be written as 2− ijk + a −2-curve but can be written as

2e0 − ijkl + branch. ( 3 -2 -1 -1 -1 0 -1), ( 3 -2 -1 -1 0 -1 -1),
( 3 -1 -2 -1 -1 -1 0), ( 3 -1 -2 -1 0 -1 -1),
( 3 -1 -1 -2 -1 -1 0), ( 3 -1 -1 -2 -1 0 -1),
( 3 -2 -1 0 -1 0 -1), ( 3 -2 0 -1 0 -1 -1), ( 3 -1 -2 0 -1 -1 0), ( 3 -1 0 -2 -1 -1 0), ( 3 -1 0 0

-1 -1 -2), ( 3 0 -2 -1 0 -1 -1), ( 3 0 -1 -2 -1 0 -1), ( 3 0 -1 0 -1 -2 -1), ( 3 0 0 -1 -2 -1 -1),
K + h ( 4 -2 -2 -2 -1 -1 -1),
( 5 -3 -2 -2 -1 -1 -2), ( 5 -2 -3 -2 -1 -2 -1), ( 5 -2 -2 -3 -2 -1 -1)

2 Beauville surfaces
app!Beauville

In this appendix we apply our methods to two Beauville surfaces. Each is an abelian
cover of P1 × P1 satisfying assumptions (A). Thus we may write any line bundle on X as
OX(a, b)(τ). We recall some facts about numerical exceptional collections on such abelian
covers of P1 × P1 from [24].

lem!GS Lemma 2.1 1. A sequence O, L1, L2, L3 of line bundles on X is numerically exceptional
if and only if it belongs to one of the four numerical types:

(Ic) O, O(−1, 0), O(c− 1,−1), O(c− 2,−1),

(IIc) O, O(0,−1), O(−1, c− 1), O(−1, c− 2),

(IIIc) O, O(−1, c), O(−1, c− 1), O(−2,−1),

(IVc) O, O(c,−1), O(c− 1,−1), O(−1,−2),

where c is any integer.
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2. For fixed c, the dihedral group action on numerically exceptional collections (see
Sec. 3.1.7) has two orbits:

Ic → IV c → I−c → IV −c → Ic,

IIc → IIIc → II−c → III−c → IIc.

As explained in Sec. 3.1.7, the Weyl group of P1 × P1 acts on numerical exceptional col-
lections on X, interchanging Ic with IIc and IIIc with IVc. The difference is that the Weyl
group action does not lift to exceptional collections, so there are two orbits. Thus we need
only consider numerically exceptional collections of line bundles of type Ic or IIc.

2.1 (Z/3)2-Beauville surface
sec!Z3-Beauville

This surface was discovered by Beauville and first described in [21], but for similar examples
see also [8]. Let X be a (Z/3)2-cover of Y = P1×P1 branched over eight lines, four in each
ruling. We label these branch divisors ∆1, . . . ,∆8 (see Figure 5). Clearly, the branch locus
has two free parameters, and in fact, the (Z/3)2-Beauville surfaces form a two dimensional
irreducible connected component of the moduli space [8], so h1(TX) = 2 and h2(TX) = 8.

∆1

∆2

∆3

∆4

∆5 ∆6 ∆7 ∆8

Figure 5: The branch locus for a Beauville surface with G = (Z/3)2 fig!Beauville-Z3

The cover ϕ : X → Y and maximal abelian cover ψ : A → Y are determined by the
maps Φ: H1(Y −∆,Z)→ (Z/3)2 and Ψ: H1(Y −∆,Z)→ (Z/3)6 as shown in the table

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

Φ(D) g1 g2 2g1 2g2 g1 + g2 g1 + 2g2 2g1 + 2g2 2g1 + g2

Ψ(D)− Φ(D) 0 0 g3 2g3 g4 g5 g6 2(g4 + g5 + g6)

The small quotient groupG ∼= (Z/3)2 is generated by g1, g2 and T is generated by g3, . . . , g6.

Remark 2.1 The original construction [21] of X is to take the free (Z/3)2-quotient of a
product C1 × C2 of two special curves of genus 6. This realises a subgroup (Z/3)2 of the
full torsion group TorsX = (Z/3)4. Using this quotient construction, many exceptional
collections of line bundles on X with numerical type I1 were constructed and studied in
[36]. We use abelian covers to completely enumerate all exceptional collections of line
bundles on X, of any numerical type.
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Let Di denote the reduced pullback of ∆i. Then the torsion free part of PicX is based
by D1 and D5, with intersection form ( 0 1

1 0 ).

lem!Z3-coordinates Lemma 2.2 The coordinates of each OX(Di) are

OX(D1) = OX(1, 0) OX(D5) = OX(0, 1)

OX(D2) = OX(1, 0)[1, 0, 1, 0] OX(D6) = OX(0, 1)[0, 1, 2, 0]

OX(D3) = OX(1, 0)[0, 2, 2, 1] OX(D7) = OX(0, 1)[0, 1, 0, 2]

OX(D4) = OX(1, 0)[1, 2, 2, 1] OX(D8) = OX(0, 1)[0, 1, 0, 0]

With this basis, using (8) we have

OX(KX) = OX(2, 2)[1, 2, 2, 2]. (7) eqn!Z3-canonical

2.1.1 The semigroup of effective divisors

In this section we prove:

lem!Z3-cone Proposition 2.1 The semigroup of effective divisors on X is generated by D1, . . . , D8.

This should be compared with the results of [1] on primary Burniat surfaces and the
discussion of Sec. 3.1.6.

We introduce some notation. Define E to be the semigroup generated by D1, . . . , D8. It
is convenient to consider E as the image of the multiplicative semigroup M of monomials in
the bigraded polynomial ring Z[x1, x2, x3, x4, y1, y2, y3, y4] under the homomorphism xi 7→
Di, yi 7→ D4+i. The xi have bidegree (1, 0), and yi have bidegree (0, 1). We abuse notation
to consider monomials in M as elements of E when appropriate. Let t : E→ TorsX be the
semigroup homomorphism defined in Sec. 3.1.6, sending each Di to its associated torsion
twist according to Lem. 2.2.

Since KX is ample, we have

lem!Z3-num-eff Lemma 2.3 If O(a, b)(τ) is an effective line bundle on X, then a ≥ 0 and b ≥ 0.

We analyse the possible values for a and b.

Lemma 2.4 If a, b ≥ 2, then OX(a, b)(τ) is effective for all τ in TorsX, unless a = b = 2
and τ = [1, 2, 2, 2].

Proof Consider the set M(2,2) of monomials of bidegree (2, 2). We use the computer [20]
to check that the image of M(2,2) under t is precisely TorsX − {[1, 2, 2, 2]}. Moreover, the
missing torsion twist is that of KX , which is not effective, because pg(X) = 0.

On the other hand, we also check that t(M(3,2)) = t(M(2,3)) = TorsX, so every line

bundle of bidegree (3, 2) or (2, 3) is effective. Now for any a ≥ 3, we see that xa−31 yb−21 M(3,2)

gives a global section for each OX(a, b)(τ). A similar argument works for b ≥ 3. �
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It remains to check what happens if a ≤ 1 or b ≤ 1. We suppose the latter (the case a ≤ 1
is similar).

lem!blesseq1 Lemma 2.5 Suppose b ≤ 1. The line bundle OX(a, b)(τ) is effective if and only if there
is a monomial m in M(a,b) such that t(m) = τ .

Proof Case b = 0. For a < 6, we check effectivity of each line bundle directly. This
is a finite number of line bundles, and so we use the computer [20]. Note that if a < a′,
then t(M(a,0)) ⊆ t(M(a′,0)). Moreover, for a ≥ 6, t(M(a,0)) stabilises to H = {[α, β, γ, 2β] :
α, β, γ ∈ Z/3}. Indeed, H is a subgroup of TorsX, so it is closed under composition of
torsion elements. Thus if a ≥ 6 then OX(a, 0)(τ) is effective for any τ in H.

Now fix a ≥ 6 and τ in TorsX −H. We show that OX(a, 0)(τ) is not effective. Write
a = 6 + 3j + k where j ≥ 0 and 0 ≤ k ≤ 2. Then by Lemma 2.2,

ϕ∗OX(a, 0)(τ) = ϕ∗L(kD1)⊗OY (j∆1) = ϕ∗L(kD1)⊗OY (j, 0),

where L = OX(6, 0)(τ). Thus if each summand of ϕ∗L(kD1) for 0 ≤ k ≤ 2 has negative
degree in the second factor, we see that OX(a, 0)(τ) can not be effective for any a ≥ 6.
We have again reduced the problem to checking a finite number of line bundles, and this
is done by computer in [20].
Case b = 1. The argument is similar to the previous case, so we give only a sketch. First
check a < 4 directly. Then for a ≥ 4, the image t(M(a,1)) stabilises to H ∪ [0, 1, 0, 0]H, the
union of two cosets of H in TorsX. This can be seen directly from Lemma 2.2. The other
torsion twists are ineffective for any a ≥ 4, by a similar computation to that of case b = 0
above. �

2.1.2 Acyclic line bundles

Now, by the Riemann–Roch theorem, the numerically acyclic line bundles on X are
O(1, k)(τ) and O(k, 1)(τ). Thus we may use Proposition 2.1 to find all acyclic line bundles.

prop!Z3-acyclic Proposition 2.2 For k ≥ 4 or k ≤ −2, the acyclic sets on X are

A(OX(1, k)) = S, A(OX(k, 1)) = T ,

where

S = {[2, α, β, γ] : α, β, γ ∈ Z/3}, T = {[α, β, γ, 2− β] : α, β, γ ∈ Z/3}.
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Proof We prove that A(O(k, 1)) = T for k ≥ 4. The acyclic set A(O(1, k)) for k ≥ 4
can be calculated in the same way, and the negative cases follow by Serre duality.

Fix an integer k ≥ 4. Then by Lem. 2.5, OX(k, 1)(τ) is not effective if and only if τ is
an element of TorsX − (H ∪ [0, 1, 0, 0]H) = T . Now by Serre duality and (7),

H2(OX(k, 1)[α, β, γ, 2− β]) = H0(OX(2− k, 1)([1− α, 2− β, 2− γ, β]),

which also vanishes by Lem. 2.5, or if k ≥ 3, we can use Lem. 2.3. Thus A(OX(1, k)) = T
for all k ≥ 4. �

In fact, the same proof shows that S ⊂ A(OX(1, k)) and T ⊂ A(OX(k, 1)) for any
integer k. For values of k between −1 and 3, there are a few extra acyclic twists, because
the image of t has not yet stabilised to its maximum. These can be checked directly, using
Prop. 2.1 as before.

L A(L)

OX(1,−1) S, [1, 1, 1, 0], [0, 1, 2, 0]

OX(1, 0) S, [0, 2, 0, 0], [1, 2, 0, 0], [1, 1, 1, 0], [0, 2, 1, 0], [1, 2, 1, 0], [0, 1, 2, 0],

[0, 2, 2, 0], [1, 2, 2, 0], [1, 0, 1, 1], [0, 0, 2, 1], [1, 2, 1, 2], [0, 2, 2, 2]

OX(1, 1) S ∪ T , [1, 0, 0, 0], [0, 0, 1, 0], [1, 2, 1, 2], [0, 2, 2, 2]

OX(1, 2) S, [1, 0, 0, 0], [0, 0, 1, 0], [1, 2, 0, 1], [0, 2, 1, 1], [0, 0, 0, 2], [1, 0, 0, 2],

[1, 1, 0, 2], [0, 0, 1, 2], [1, 0, 1, 2], [0, 1, 1, 2], [0, 0, 2, 2], [1, 0, 2, 2]

OX(1, 3) S, [1, 1, 0, 2], [0, 1, 1, 2]

In the other direction,

L A(L)

OX(−1, 1) T , [1, 0, 2, 1], [1, 1, 1, 2]

OX(0, 1) T , [1, 0, 0, 0], [2, 0, 0, 0], [1, 1, 0, 0], [2, 1, 2, 0], [2, 0, 0, 1], [2, 2, 1, 1],

[1, 0, 2, 1], [1, 2, 2, 1], [1, 1, 1, 2], [1, 2, 1, 2], [2, 2, 1, 2], [2, 1, 2, 2]

OX(2, 1) T , [2, 1, 0, 0], [0, 0, 1, 0], [2, 0, 1, 0], [0, 1, 1, 0], [0, 0, 0, 1], [0, 2, 0, 1],

[2, 0, 1, 1], [2, 2, 2, 1], [2, 1, 0, 2], [0, 1, 2, 2], [0, 2, 2, 2], [2, 2, 2, 2]

OX(3, 1) T , [0, 1, 1, 0], [0, 2, 0, 1]

Many exceptional collections on X of numerical type I1 and with formal A∞-algebra
were constructed in [36]. We can classify all exceptional collections of line bundles on X,
of any numerical type. The enumeration is summarised below, but see [20] for details.
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Proposition 2.3 Exceptional collections of line bundles on the Z/3-Beauville surface are
enumerated in the table below. The integer c ≥ 0 determines the numerical type of the
exceptional collection, either Ic or IIc. The number of type Ic is equal to the number of
type IIc.

c 0 1 2 ≥ 3

#(Exceptional collections) 6661 3613 2213 2187 = 37

We display a sample exceptional collection of type I1

OX , OX(−1, 0)[0, 1, 0, 0], OX(0,−1)[2, 2, 0, 0], OX(−1,−1)[1, 0, 1, 0]

0 1 2 3

0 1 q2 q2 4q2

1 1 0 0 6q2

2 1 2q2 6q2 8q2

3 1 4q2 6q2 6q2

Table 7: Ext-table of an exceptional collection on the (Z/3)2-Beauville surface tab!ext-Beauville-Z3

Table 7 is the Ext-table of this exceptional collection. We see that there are no nonzero
Ext1-groups. Hence the A∞-algebra is formal, and the height is 4. Thus the Hochschild
cohomology of the corresponding quasiphantom category is HH0(A) = C, HH1(A) = 0,
HH2(A) = C2, HH3(A) ⊃ C8.

2.2 (Z/5)2-Beauville surface
sec!Z5-Beauville

We consider the (Z/5)2-Beauville surface, which was first described in [11] and [21]. Ex-
ceptional collections of line bundles on this surface were classified by Galkin and Shinder
[24], which was a major influence on our overall approach. We recover the results of [24]
as a test case for our methods.

This time X is a (Z/5)2-cover of Y = P1 × P1 branched over six lines, three in each
ruling. This branch configuration is rigid, and in fact the moduli space of such Beauville
surfaces is zero dimensional and smooth. The torsion group of X is TorsX ∼= (Z/5)2, which
is fully realised by the standard construction of X as a free (Z/5)2-quotient of C1 × C2,
where Ci are Fermat quintic curves. Thus C1 × C2 is the maximal abelian cover A (this
description of A is not necessary for our approach).
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The maps Φ: H1(Y −∆,Z)→ (Z/5)2 and Ψ: H1(Y −B,Z)→ G̃ ∼= (Z/5)4 determining
the covers are defined in the following table

∆1 ∆2 ∆3 ∆4 ∆5 ∆6

Φ(D) g1 g2 4g1 + 4g2 g1 + 2g2 3g1 + 4g2 g1 + 4g2

Ψ(D)− Φ(D) 0 0 0 g3 g4 4g3 + 4g4

The reduced pullbacks D1 (respectively D4) of ∆1 (resp. ∆4) are a basis for the free
part of PicX. As usual, the other reduced pullbacks may be written in terms of this basis,
and we have

lem!Z5-coordinates Lemma 2.6

OX(D1) = OX(1, 0), OX(D5) = OX(0, 1),

OX(D2) = OX(1, 0)[1, 1], OX(D5) = OX(0, 1)[1, 4],

OX(D3) = OX(1, 0)[4, 2], OX(D6) = OX(0, 1)[1, 0].

By (8), we have
OX(KX) = OX(2, 2)[3, 3].

lem!Z5-effective Lemma 2.7 The semigroup E of effective divisors on X is the set of positive integer linear
combinations of D1, . . . , D6.

The proof of this Lemma is similar to that of Prop. 2.1.
As in Sec. 3.1.6, we define a semigroup homomorphism t : E→ TorsX using the torsion

twists from Lem. 2.6. Using Lem. 2.7, we list all acyclic line bundles on X in the following
table. We note that the restrictions t|E(1,j)

and t|E(k,1)
are surjective for j ≥ 5 and k ≥ 4.

L A(L)

OX(1,−2) [2, 0]

OX(1,−1) [2, 0], [3, 0], [3, 4]

OX(1, 0) [2, 0], [3, 0], [4, 0], [0, 1], [4, 3], [3, 4], [4, 4]

OX(1, 1) [3, 0], [4, 0], [0, 3], [4, 3], [0, 4], [3, 4], [4, 4]

OX(1, 2) [4, 0], [3, 2], [0, 3], [1, 3], [4, 3], [0, 4], [4, 4]

OX(1, 3) [0, 3], [1, 3], [0, 4]

OX(1, 4) [1, 3]

OX(−1, 1) [4, 2]

OX(0, 1) [4, 2], [0, 3], [4, 3], [3, 4]

OX(2, 1) [3, 0], [4, 0], [4, 1], [0, 4]

OX(3, 1) [4, 1]
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Up to choices of coordinates, these are precisely the acyclic line bundles listed in [24], and
there are no others. It seems that the rigidity of X is reflected in the small number of
acyclic line bundles.

Using this list of acyclic line bundles, and Lemma 2.1, we can classify all exceptional
collections of line bundles of length four on X. Here is the complete list, which form two
orbits, replicating results of [24].

I−1 O, O(−1, 0)[0, 4], O(−2,−1)[1, 0], O(−3,−1)[1, 4]

IV−1 O, O(−1,−1)[1, 1], O(−2,−1)[1, 0], O(−1,−2)[2, 3]

I1 O, O(−1, 0)[0, 4], O(0,−1)[1, 2], O(−1,−1)[1, 1]

IV1 O, O(1,−1)[1, 3], O(0,−1)[1, 2], O(−1− 2)[2, 3]{
II0 O, O(0,−1)[1, 2], O(−1,−1)[1, 1], O(−1,−2)[2, 3]

III0 O, O(−1, 0)[0, 4], O(−1,−1)[1, 1], O(−2,−1)[1, 0]

We do not continue the analysis of quasi-phantoms, since it appears in [24]. We only verify
that our results are consistent.

3 Keum–Naie surface with K2 = 4
sec!Keum-Naie

In this section we investigate a construction of Keum–Naie surfaces, which just fails to
satisfy our assumptions from Sec. 3.1. The problem is that the maximal abelian cover
A→ X does not factor through a Galois cover of the del Pezzo surface Y . Thus while we
can describe the free part of PicX in terms of reduced pullbacks of branch divisors, we can
only describe an index 2 subgroup of TorsX using our approach. We have used various
numerical exceptional collections to search for exceptional collections of maximal length
on X, but without success.

3.1 Construction and basic properties of the surface

Keum–Naie surfaces were discovered independently in [38] and [30] as branched double
covers of Enriques surfaces with eight nodes. The connected component of the moduli space
containing Keum–Naie surfaces has dimension 6, and the torsion group is (Z/2)3 × Z/4.

Following [10] and [3], we consider a special 2-dimensional subfamily of Keum–Naie
surfaces. Each surface X in the subfamily admits a singular Z/2 × Z/4-cover of P1 × P1

branched over eight lines, four in each ruling. The branch configuration is shown in Figure
6.

The map Φ: H1(P1 × P1 − ∆,Z) → Z/2 × Z/4 governing the cover X → P1 × P1 is
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Figure 6: The Keum–Naie configuration with K2 = 4 fig!Keum-Naie

described in the table below.

Γ A1 A2 B1 B2 C1 C2 D1 D2

Φ(Γ) h 3h g1 + h g1 + 3h g1 g1 g1 + 2h g1 + 2h

Ψ′(Γ)− Φ(Γ) 0 g2 g3 g4 0 g2 g5 g3 + g4 + g5

In the table, gi have order 2 while h has order 4. We see that the four divisors Ai, Bi

have inertia group Z/4 under ϕ, while the other branch divisors have inertia group Z/2.
Moreover, the four points P1, . . . , P4 correspond to 1

2(1, 1) singularities on X. We blow up
the Pi to get a nonsingular cover of a weak del Pezzo surface Y of degree 4. Write Ei for
the (−1)-curve corresponding to Pi. We use the same labels for the strict transforms under
the blow up, so Ai, Bi are (−2)-curves on Y . Note that by formula (1) the curves Ei have
inertia group Z/2.

The following proposition explains why we can not find exceptional collections on the
Keum–Naie surface.

Proposition 3.1 Let A be the maximal abelian cover of X. The composite map A →
X → Y is not Galois.

Proof The torsion group of X is (Z/2)3 × Z/4, so if ψ : A → Y is Galois, we have a
surjective homomorphism Ψ: H1(Y − ∆,Z) → (Z/2)4 × (Z/4)2. Now consider Ψ(E1) =
Ψ(A1 + B1). The order of Ψ(Ei) must be 2, while the orders of Ψ(A1) and Ψ(B1) must
be 4. We have similar requirements coming from the other Ei. There is no surjective
homomorphism Ψ satisfying these conditions. �

We define A′ to be the intermediate Galois cover A′ → X corresponding to the subgroup
(Z/2)4 of index 2 in TorsX, generated by g2, . . . , g5. The composite map A′ → X → Y is
Galois, with defining map Ψ′ : H1(Y −∆,Z)→ Z/4× (Z/2)5 in the table above.

3.2 The Picard group

lem!KN-picard Lemma 3.1 The reduced pullbacks e0 = A1 + B1 + E1, e1 = A2 + B1 + E2, e2 = A1,
e3 = A2, e4 = B1, e5 = B2 generate the Picard lattice of X with intersection matrix
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U ⊕ diag(−1,−1,−1,−1), where U = ( 0 1
1 0 ).

Proof We first show that linear combinations of the quoted divisors generate PicY . We
use the following linear equivalences on Y

C1 ∼ C2 ∼ A1 + E1 + E4 ∼ A2 + E2 + E3

D1 ∼ D2 ∼ B1 + E1 + E2 ∼ B2 + E3 + E4,
(8) eqn!KN-lin-equiv

to express E3 and E4 in terms of the basis. The rest of the proof is similar to that
of Lemma 3.3. Checking the intersection matrix requires some care with the definition of
reduced pullback, because the inertia groups of ϕ are not uniform. For example, we actually
have 4e0 = ϕ∗(A1 + 2E1 +B1) and 4e1 = ϕ∗(A2 + 2E2 +B1), so that 16e0 · e1 = deg(ϕ) · 2,
and hence e0 · e1 = 1. �

Remark 3.1 By Lemma 3.1, we see that A1 is an elliptic curve of self-intersection −1
on X, even though A1 is a (−2)-curve on Y . In other words, assumptions (A1) and (A2)
hold for the Keum–Naie surface, but (A3) does not. Instead we get an isometry from the
abstract lattice Z1,5 → PicX/TorsX, under which the image of 2e0 + 2e1 −

∑5
i=2 ei is the

class of OX(KX) modulo torsion.

We compute the coordinates of the reduced pullback of each irreducible branch com-
ponent using the basis provided by Lemma 3.1.

Lemma 3.2 We have

OX(A1) = OX(0, 0, 1, 0, 0, 0) OX(D1) = OX(1, 1,−1,−1, 0, 0)[0, 1, 0, 0]

OX(A2) = OX(0, 0, 0, 1, 0, 0) OX(D2) = OX(1, 1,−1,−1, 0, 0)[0, 1, 0, 1]

OX(B1) = OX(0, 0, 0, 0, 1, 0) OX(E1) = OX(1, 0,−1, 0,−1, 0)

OX(B2) = OX(0, 0, 0, 0, 0, 1) OX(E2) = OX(0, 1, 0,−1,−1, 0)

OX(C1) = OX(1, 1, 0, 0,−1,−1)[1, 1, 1, 0] OX(E3) = OX(1, 0, 0,−1, 0,−1)[0, 0, 0, 1]

OX(C2) = OX(1, 1, 0, 0,−1,−1)[1, 0, 0, 1] OX(E4) = OX(0, 1,−1, 0, 0,−1)[0, 1, 1, 1]

Proof This is similar to Lemma 3.3. One minor point, in computing the multidegrees.
The linear equivalences (8) on Y pull back to X giving numerical equivalences

C1 ≡ C2 ≡ 2A1 + E1 + E4 ≡ 2A2 + E2 + E3

D1 ≡ D2 ≡ 2B1 + E1 + E2 ≡ 2B2 + E3 + E4.

These can be rearranged to give

A1 +B1 + E1 ≡ A2 +B2 + E3, A2 +B1 + E2 ≡ A1 +B2 + E4,

which is used to express each reduced pullback in terms of the basis from Lemma 3.1. �

23



Lemma 3.3 By formula (8) and Lem. 3.1, OX(KX) = OX(2, 2,−1,−1,−1,−1). �

We conclude by noting that we have searched for, but not found any exceptional col-
lections of maximal length on the Keum–Naie surface. It seems that our subgroup of
TorsX is too small to allow us the freedom to find any. On a related note, exceptional
collections of maximal length have not been discovered on the Burniat–Campedelli surface
with K2 = 2 (see [1]), and some Beauville surfaces considered in [36]. Here the situation
is more straightforward, because these surfaces fail to satisfy assumption (A1) and (A2)
respectively.
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